Solstice client.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 

867 lines
25 KiB

//! This module provides encoding and decoding functionality for basic values.
//!
//! The protocol is pretty basic, though quirky. Base types are serialized in
//! the following way:
//!
//! * 32-bit integers are serialized in 4 bytes, little-endian.
//! * 16-bit integers are serialized as 32-bit integers with upper bytes set
//! to 0.
//! * Booleans are serialized as single bytes, containing either 0 or 1.
//! * IPv4 addresses are serialized as 32-bit integers.
//! * Strings are serialized as 32-bit-length-prefixed arrays of Windows 1252
//! encoded characters.
//! * Pairs are serialized as two consecutive values.
//! * Vectors are serialized as length-prefixed arrays of serialized values.
use std::io;
use std::net;
use encoding::all::WINDOWS_1252;
use encoding::{DecoderTrap, EncoderTrap, Encoding};
use std::convert::{TryFrom, TryInto};
use thiserror::Error;
// Constants
// ---------
/// Length of an encoded 32-bit integer in bytes.
pub const U32_BYTE_LEN: usize = 4;
pub trait Decode<T> {
/// Attempts to decode an instance of `T` from `self`.
fn decode(&mut self) -> io::Result<T>;
}
pub trait Encode<T> {
/// Attempts to encode `value` into `self`.
fn encode(&mut self, value: T) -> io::Result<()>;
}
// TODO: Add backtrace fields to each enum variant once std::backtrace is
// stabilized.
#[derive(PartialEq, Error, Debug)]
pub enum ValueDecodeError {
#[error("at position {position}: not enough bytes to decode: expected {expected}, found {remaining}")]
NotEnoughData {
/// The number of bytes the decoder expected to read.
///
/// Invariant: `remaining < expected`.
expected: usize,
/// The number of bytes remaining in the input buffer.
///
/// Invariant: `remaining < expected`.
remaining: usize,
/// The decoder's position in the input buffer.
position: usize,
},
#[error("at position {position}: invalid boolean value: {value}")]
InvalidBool {
/// The invalid value. Never equal to 0 nor 1.
value: u8,
/// The decoder's position in the input buffer.
position: usize,
},
#[error("at position {position}: invalid u16 value: {value}")]
InvalidU16 {
/// The invalid value. Always greater than u16::max_value().
value: u32,
/// The decoder's position in the input buffer.
position: usize,
},
#[error("at position {position}: failed to decode string: {cause}")]
InvalidString {
/// The cause of the error, as reported by the encoding library.
cause: String,
/// The decoder's position in the input buffer.
position: usize,
},
#[error("at position {position}: invalid {value_name}: {cause}")]
InvalidData {
/// The name of the value the decoder failed to decode.
value_name: String,
/// The cause of the error.
cause: String,
/// The decoder's position in the input buffer.
position: usize,
},
}
impl From<ValueDecodeError> for io::Error {
fn from(error: ValueDecodeError) -> Self {
let kind = match &error {
&ValueDecodeError::NotEnoughData { .. } => io::ErrorKind::UnexpectedEof,
_ => io::ErrorKind::InvalidData,
};
let message = format!("{}", &error);
io::Error::new(kind, message)
}
}
/// A type for decoding various types of values from protocol messages.
pub struct ValueDecoder<'a> {
// The buffer we are decoding from.
//
// Invariant: `position <= buffer.len()`.
buffer: &'a [u8],
// Our current position within `buffer`.
//
// We could instead maintain this implicitly in `buffer` by splitting off
// decoded bytes from the start of the buffer, but we would then be unable
// to remember how many bytes we had decoded. This information is useful to
// have in error messages when encountering decoding errors.
//
// Invariant: `position <= buffer.len()`.
position: usize,
}
/// This trait is implemented by types that can be decoded from messages using
/// a `ValueDecoder`.
pub trait ValueDecode: Sized {
/// Attempts to decode a value of this type with the given decoder.
fn decode_from(decoder: &mut ValueDecoder) -> Result<Self, ValueDecodeError>;
}
impl<'a> ValueDecoder<'a> {
/// Wraps the given byte buffer.
pub fn new(buffer: &'a [u8]) -> Self {
Self {
buffer: buffer,
position: 0,
}
}
/// The current position of this decoder in the input buffer.
pub fn position(&self) -> usize {
self.position
}
/// Returns the number of bytes remaining to decode.
pub fn remaining(&self) -> usize {
self.buffer.len() - self.position
}
/// Returns whether the underlying buffer has remaining bytes to decode.
///
/// Shorthand for `remaining() > 0`.
pub fn has_remaining(&self) -> bool {
self.remaining() > 0
}
/// Returns a read-only view of the remaining bytes to decode.
///
/// The returned slice is of size `remaining()`.
pub fn bytes(&self) -> &[u8] {
&self.buffer[self.position..]
}
/// Attempts to consume the next `n` bytes from this buffer.
///
/// Returns a slice of size `n` if successful, in which case this decoder
/// advances its internal position by `n`.
fn consume(&mut self, n: usize) -> Result<&[u8], ValueDecodeError> {
if self.remaining() < n {
return Err(ValueDecodeError::NotEnoughData {
expected: n,
remaining: self.remaining(),
position: self.position,
});
}
// Cannot use bytes() here as it borrows self immutably, which
// prevents us from mutating self.position afterwards.
let end = self.position + n;
let bytes = &self.buffer[self.position..end];
self.position = end;
Ok(bytes)
}
/// Attempts to decode a u32 value.
fn decode_u32(&mut self) -> Result<u32, ValueDecodeError> {
let bytes = self.consume(U32_BYTE_LEN)?;
// The conversion from slice to fixed-size array cannot fail, because
// consume() guarantees that its return value is of size n.
let array: [u8; U32_BYTE_LEN] = bytes.try_into().unwrap();
Ok(u32::from_le_bytes(array))
}
fn decode_u16(&mut self) -> Result<u16, ValueDecodeError> {
let position = self.position;
let n = self.decode_u32()?;
match u16::try_from(n) {
Ok(value) => Ok(value),
Err(_) => Err(ValueDecodeError::InvalidU16 {
value: n,
position: position,
}),
}
}
/// Attempts to decode a boolean value.
fn decode_bool(&mut self) -> Result<bool, ValueDecodeError> {
let position = self.position;
let bytes = self.consume(1)?;
match bytes[0] {
0 => Ok(false),
1 => Ok(true),
n => Err(ValueDecodeError::InvalidBool {
value: n,
position: position,
}),
}
}
/// Attempts to decode a string value.
fn decode_string(&mut self) -> Result<String, ValueDecodeError> {
let length = self.decode_u32()? as usize;
let position = self.position;
let bytes = self.consume(length)?;
let result = WINDOWS_1252.decode(bytes, DecoderTrap::Strict);
match result {
Ok(string) => Ok(string),
Err(error) => Err(ValueDecodeError::InvalidString {
cause: error.to_string(),
position: position,
}),
}
}
/// Attempts to decode a value of the given type.
///
/// Allows easy decoding of complex values using type inference:
///
/// ```
/// let val: Foo = decoder.decode()?;
/// ```
pub fn decode<T: ValueDecode>(&mut self) -> Result<T, ValueDecodeError> {
T::decode_from(self)
}
}
impl ValueDecode for u32 {
fn decode_from(decoder: &mut ValueDecoder) -> Result<Self, ValueDecodeError> {
decoder.decode_u32()
}
}
impl ValueDecode for u16 {
fn decode_from(decoder: &mut ValueDecoder) -> Result<Self, ValueDecodeError> {
decoder.decode_u16()
}
}
impl ValueDecode for bool {
fn decode_from(decoder: &mut ValueDecoder) -> Result<Self, ValueDecodeError> {
decoder.decode_bool()
}
}
impl ValueDecode for net::Ipv4Addr {
fn decode_from(decoder: &mut ValueDecoder) -> Result<Self, ValueDecodeError> {
let ip = decoder.decode_u32()?;
Ok(net::Ipv4Addr::from(ip))
}
}
impl ValueDecode for String {
fn decode_from(decoder: &mut ValueDecoder) -> Result<Self, ValueDecodeError> {
decoder.decode_string()
}
}
impl<T: ValueDecode, U: ValueDecode> ValueDecode for (T, U) {
fn decode_from(decoder: &mut ValueDecoder) -> Result<Self, ValueDecodeError> {
let first = decoder.decode()?;
let second = decoder.decode()?;
Ok((first, second))
}
}
impl<T: ValueDecode> ValueDecode for Vec<T> {
fn decode_from(decoder: &mut ValueDecoder) -> Result<Self, ValueDecodeError> {
let len = decoder.decode_u32()? as usize;
let mut vec = Vec::with_capacity(len);
for _ in 0..len {
let val = decoder.decode()?;
vec.push(val);
}
Ok(vec)
}
}
#[derive(Debug, Error, PartialEq)]
pub enum ValueEncodeError {
#[error("encoded string length {length} is too large: {string:?}")]
StringTooLong {
/// The string that is too long to encode.
string: String,
/// The length of `string` in the Windows-1252 encoding.
/// Always larger than `u32::max_value()`.
length: usize,
},
}
impl From<ValueEncodeError> for io::Error {
fn from(error: ValueEncodeError) -> Self {
io::Error::new(io::ErrorKind::InvalidData, format!("{}", error))
}
}
/// A type for encoding various types of values into protocol messages.
pub struct ValueEncoder<'a> {
/// The buffer to which the encoder appends encoded bytes.
buffer: &'a mut Vec<u8>,
}
/// This trait is implemented by types that can be encoded into messages using
/// a `ValueEncoder`.
pub trait ValueEncode {
// TODO: Rename to encode_to().
/// Attempts to encode `self` with the given encoder.
fn encode(&self, encoder: &mut ValueEncoder) -> Result<(), ValueEncodeError>;
}
impl<'a> ValueEncoder<'a> {
/// Wraps the given buffer for encoding values into.
///
/// Encoded bytes are appended. The buffer is not pre-cleared.
pub fn new(buffer: &'a mut Vec<u8>) -> Self {
ValueEncoder { buffer: buffer }
}
/// Encodes the given u32 value into the underlying buffer.
pub fn encode_u32(&mut self, val: u32) -> Result<(), ValueEncodeError> {
self.buffer.extend_from_slice(&val.to_le_bytes());
Ok(())
}
/// Encodes the given u16 value into the underlying buffer.
pub fn encode_u16(&mut self, val: u16) -> Result<(), ValueEncodeError> {
self.encode_u32(val as u32)
}
/// Encodes the given boolean value into the underlying buffer.
pub fn encode_bool(&mut self, val: bool) -> Result<(), ValueEncodeError> {
self.buffer.push(val as u8);
Ok(())
}
/// Encodes the given string into the underlying buffer.
pub fn encode_string(&mut self, val: &str) -> Result<(), ValueEncodeError> {
// Record where we were when we started. This is where we will write
// the length prefix once we are done encoding the string. Until then
// we do not know how many bytes are needed to encode the string.
let prefix_position = self.buffer.len();
self.buffer.extend_from_slice(&[0; U32_BYTE_LEN]);
let string_position = prefix_position + U32_BYTE_LEN;
// Encode the string. We are quite certain this cannot fail because we
// use EncoderTrap::Replace to replace any unencodable characters with
// '?' which is always encodable in Windows-1252.
WINDOWS_1252
.encode_to(val, EncoderTrap::Replace, self.buffer)
.unwrap();
// Calculate the length of the string we just encoded.
let length = self.buffer.len() - string_position;
let length_u32 = match u32::try_from(length) {
Ok(value) => value,
Err(_) => {
return Err(ValueEncodeError::StringTooLong {
string: val.to_string(),
length: length,
})
}
};
// Write the length prefix in the space we initially reserved for it.
self.buffer[prefix_position..string_position].copy_from_slice(&length_u32.to_le_bytes());
Ok(())
}
/// Encodes the given value into the underlying buffer.
///
/// Allows for easy encoding with type inference:
/// ```
/// encoder.encode(&Foo::new(bar))?;
/// ```
pub fn encode<T: ValueEncode>(&mut self, val: &T) -> Result<(), ValueEncodeError> {
val.encode(self)
}
}
impl ValueEncode for u32 {
fn encode(&self, encoder: &mut ValueEncoder) -> Result<(), ValueEncodeError> {
encoder.encode_u32(*self)
}
}
impl ValueEncode for u16 {
fn encode(&self, encoder: &mut ValueEncoder) -> Result<(), ValueEncodeError> {
encoder.encode_u16(*self)
}
}
impl ValueEncode for bool {
fn encode(&self, encoder: &mut ValueEncoder) -> Result<(), ValueEncodeError> {
encoder.encode_bool(*self)
}
}
impl ValueEncode for net::Ipv4Addr {
fn encode(&self, encoder: &mut ValueEncoder) -> Result<(), ValueEncodeError> {
encoder.encode_u32(u32::from(*self))
}
}
// It would be nice to use AsRef<str>, or Deref<Target=str> for the following
// stringy types instead of having to spell them out, but trying that fails
// because E0119: "upstream crates may add new impl of trait
// `core::convert::AsRef<str>` for type `bool` in future versions".
// We could probably work around this with more complex type logic (e.g.
// wrapping primitive types in a newtype for which we implement
// Proto{De,En}code) but it is not really worth the hassle.
impl ValueEncode for str {
fn encode(&self, encoder: &mut ValueEncoder) -> Result<(), ValueEncodeError> {
encoder.encode_string(self)
}
}
impl ValueEncode for String {
fn encode(&self, encoder: &mut ValueEncoder) -> Result<(), ValueEncodeError> {
encoder.encode_string(self)
}
}
impl<'a> ValueEncode for &'a String {
fn encode(&self, encoder: &mut ValueEncoder) -> Result<(), ValueEncodeError> {
encoder.encode_string(*self)
}
}
impl<T: ValueEncode, U: ValueEncode> ValueEncode for (T, U) {
fn encode(&self, encoder: &mut ValueEncoder) -> Result<(), ValueEncodeError> {
self.0.encode(encoder)?;
self.1.encode(encoder)
}
}
impl<T: ValueEncode> ValueEncode for [T] {
fn encode(&self, encoder: &mut ValueEncoder) -> Result<(), ValueEncodeError> {
encoder.encode_u32(self.len() as u32)?;
for ref item in self {
item.encode(encoder)?;
}
Ok(())
}
}
impl<T: ValueEncode> ValueEncode for Vec<T> {
fn encode(&self, encoder: &mut ValueEncoder) -> Result<(), ValueEncodeError> {
let slice: &[T] = &*self;
slice.encode(encoder)
}
}
/*=======*
* TESTS *
*=======*/
#[cfg(test)]
pub mod tests {
use std::fmt;
use std::io;
use std::net;
use std::u16;
use std::u32;
use super::{ValueDecode, ValueDecodeError, ValueDecoder, ValueEncode, ValueEncoder};
// Declared here because assert_eq!(bytes, &[]) fails to infer types.
const EMPTY_BYTES: &'static [u8] = &[];
pub fn roundtrip<T>(input: T)
where
T: fmt::Debug + Eq + PartialEq + ValueEncode + ValueDecode,
{
let mut bytes = vec![];
ValueEncoder::new(&mut bytes).encode(&input).unwrap();
let output = ValueDecoder::new(&bytes).decode::<T>().unwrap();
assert_eq!(output, input);
}
// A few integers and their corresponding byte encodings.
const U32_ENCODINGS: [(u32, [u8; 4]); 8] = [
(0, [0, 0, 0, 0]),
(255, [255, 0, 0, 0]),
(256, [0, 1, 0, 0]),
(65535, [255, 255, 0, 0]),
(65536, [0, 0, 1, 0]),
(16777215, [255, 255, 255, 0]),
(16777216, [0, 0, 0, 1]),
(u32::MAX, [255, 255, 255, 255]),
];
#[test]
fn encode_u32() {
for &(val, ref encoded_bytes) in &U32_ENCODINGS {
let mut bytes = vec![13];
let mut expected_bytes = vec![13];
expected_bytes.extend(encoded_bytes);
ValueEncoder::new(&mut bytes).encode_u32(val).unwrap();
assert_eq!(bytes, expected_bytes);
}
}
#[test]
fn decode_u32() {
for &(expected_val, ref bytes) in &U32_ENCODINGS {
let buffer = bytes.to_vec();
let mut decoder = ValueDecoder::new(&buffer);
let val = decoder.decode::<u32>().unwrap();
assert_eq!(val, expected_val);
assert_eq!(decoder.bytes(), EMPTY_BYTES);
}
}
#[test]
fn roundtrip_u32() {
for &(val, _) in &U32_ENCODINGS {
roundtrip(val)
}
}
#[test]
fn decode_u32_unexpected_eof() {
let buffer = vec![13];
let mut decoder = ValueDecoder::new(&buffer);
let result = decoder.decode::<u32>();
assert_eq!(
result,
Err(ValueDecodeError::NotEnoughData {
expected: 4,
remaining: 1,
position: 0,
})
);
assert_eq!(decoder.bytes(), &[13]);
}
#[test]
fn encode_bool_false() {
let mut bytes = vec![13];
ValueEncoder::new(&mut bytes).encode_bool(false).unwrap();
assert_eq!(bytes, vec![13, 0]);
}
#[test]
fn encode_bool_true() {
let mut bytes = vec![13];
ValueEncoder::new(&mut bytes).encode_bool(true).unwrap();
assert_eq!(bytes, vec![13, 1]);
}
#[test]
fn decode_bool_false() {
let buffer = vec![0];
let mut decoder = ValueDecoder::new(&buffer);
let val = decoder.decode::<bool>().unwrap();
assert!(!val);
assert_eq!(decoder.bytes(), EMPTY_BYTES);
}
#[test]
fn decode_bool_true() {
let buffer = vec![1];
let mut decoder = ValueDecoder::new(&buffer);
let val = decoder.decode::<bool>().unwrap();
assert!(val);
assert_eq!(decoder.bytes(), EMPTY_BYTES);
}
#[test]
fn decode_bool_invalid() {
let buffer = vec![42];
let result = ValueDecoder::new(&buffer).decode::<bool>();
assert_eq!(
result,
Err(ValueDecodeError::InvalidBool {
value: 42,
position: 0,
})
);
}
#[test]
fn decode_bool_unexpected_eof() {
let buffer = vec![];
let result = ValueDecoder::new(&buffer).decode::<bool>();
assert_eq!(
result,
Err(ValueDecodeError::NotEnoughData {
expected: 1,
remaining: 0,
position: 0,
})
);
}
#[test]
fn roundtrip_bool() {
roundtrip(false);
roundtrip(true);
}
#[test]
fn encode_u16() {
for &(val, ref encoded_bytes) in &U32_ENCODINGS {
if val > u16::MAX as u32 {
continue;
}
let mut bytes = vec![13];
let mut expected_bytes = vec![13];
expected_bytes.extend(encoded_bytes);
ValueEncoder::new(&mut bytes).encode(&(val as u16)).unwrap();
assert_eq!(bytes, expected_bytes);
}
}
#[test]
fn decode_u16() {
for &(expected_val, ref buffer) in &U32_ENCODINGS {
let mut decoder = ValueDecoder::new(buffer);
if expected_val <= u16::MAX as u32 {
let val = decoder.decode::<u16>().unwrap();
assert_eq!(val, expected_val as u16);
assert_eq!(decoder.bytes(), EMPTY_BYTES);
} else {
assert_eq!(
decoder.decode::<u16>(),
Err(ValueDecodeError::InvalidU16 {
value: expected_val,
position: 0,
})
);
}
}
}
#[test]
fn decode_u16_unexpected_eof() {
let buffer = vec![];
let mut decoder = ValueDecoder::new(&buffer);
let result = decoder.decode::<u16>();
assert_eq!(
result,
Err(ValueDecodeError::NotEnoughData {
expected: 4,
remaining: 0,
position: 0,
})
);
}
#[test]
fn roundtrip_u16() {
for &(val, _) in &U32_ENCODINGS {
if val <= u16::MAX as u32 {
roundtrip(val)
}
}
}
#[test]
fn encode_ipv4() {
for &(val, ref encoded_bytes) in &U32_ENCODINGS {
let mut bytes = vec![13];
let mut expected_bytes = vec![13];
expected_bytes.extend(encoded_bytes);
let addr = net::Ipv4Addr::from(val);
ValueEncoder::new(&mut bytes).encode(&addr).unwrap();
assert_eq!(bytes, expected_bytes);
}
}
#[test]
fn decode_ipv4() {
for &(expected_val, ref buffer) in &U32_ENCODINGS {
let mut decoder = ValueDecoder::new(buffer);
let val = decoder.decode::<net::Ipv4Addr>().unwrap();
assert_eq!(val, net::Ipv4Addr::from(expected_val));
assert_eq!(decoder.bytes(), EMPTY_BYTES);
}
}
#[test]
fn roundtrip_ipv4() {
for &(val, _) in &U32_ENCODINGS {
roundtrip(net::Ipv4Addr::from(val))
}
}
// A few strings and their corresponding encodings.
const STRING_ENCODINGS: [(&'static str, &'static [u8]); 3] = [
("", &[0, 0, 0, 0]),
("hey!", &[4, 0, 0, 0, 104, 101, 121, 33]),
// Windows 1252 specific codepoints.
("‘’“”€", &[5, 0, 0, 0, 145, 146, 147, 148, 128]),
];
#[test]
fn encode_string() {
for &(string, encoded_bytes) in &STRING_ENCODINGS {
let mut bytes = vec![13];
let mut expected_bytes = vec![13];
expected_bytes.extend(encoded_bytes);
ValueEncoder::new(&mut bytes).encode_string(string).unwrap();
assert_eq!(bytes, expected_bytes);
}
}
#[test]
fn encode_string_with_unencodable_characters() {
let mut bytes = vec![];
ValueEncoder::new(&mut bytes)
.encode_string("忠犬ハチ公")
.unwrap();
// Characters not in the Windows 1252 codepage are rendered as '?'.
assert_eq!(bytes, &[5, 0, 0, 0, 63, 63, 63, 63, 63]);
assert_eq!(ValueDecoder::new(&bytes).decode_string().unwrap(), "?????");
}
#[test]
fn decode_string() {
for &(expected_string, buffer) in &STRING_ENCODINGS {
let mut decoder = ValueDecoder::new(&buffer);
let string = decoder.decode::<String>().unwrap();
assert_eq!(string, expected_string);
assert_eq!(decoder.bytes(), EMPTY_BYTES);
}
}
#[test]
fn roundtrip_string() {
for &(string, _) in &STRING_ENCODINGS {
roundtrip(string.to_string())
}
}
#[test]
fn encode_pair_u32_string() {
let mut bytes = vec![13];
let mut expected_bytes = vec![13];
let (integer, ref expected_integer_bytes) = U32_ENCODINGS[0];
let (string, expected_string_bytes) = STRING_ENCODINGS[0];
expected_bytes.extend(expected_integer_bytes);
expected_bytes.extend(expected_string_bytes);
ValueEncoder::new(&mut bytes)
.encode(&(integer, string.to_string()))
.unwrap();
assert_eq!(bytes, expected_bytes);
}
#[test]
fn decode_pair_u32_string() {
let mut buffer = vec![];
let (expected_integer, ref integer_bytes) = U32_ENCODINGS[0];
let (expected_string, string_bytes) = STRING_ENCODINGS[0];
buffer.extend(integer_bytes);
buffer.extend(string_bytes);
let mut decoder = ValueDecoder::new(&buffer);
let pair = decoder.decode::<(u32, String)>().unwrap();
assert_eq!(pair, (expected_integer, expected_string.to_string()));
assert_eq!(decoder.bytes(), EMPTY_BYTES);
}
#[test]
fn roundtrip_pair_u32_string() {
roundtrip((42u32, "hello world!".to_string()))
}
#[test]
fn encode_u32_vector() {
let mut vec = vec![];
let mut expected_bytes = vec![13, U32_ENCODINGS.len() as u8, 0, 0, 0];
for &(val, ref encoded_bytes) in &U32_ENCODINGS {
vec.push(val);
expected_bytes.extend(encoded_bytes);
}
let mut bytes = vec![13];
ValueEncoder::new(&mut bytes).encode(&vec).unwrap();
assert_eq!(bytes, expected_bytes);
}
#[test]
fn decode_u32_vector() {
let mut expected_vec = vec![];
let mut buffer = vec![U32_ENCODINGS.len() as u8, 0, 0, 0];
for &(expected_val, ref encoded_bytes) in &U32_ENCODINGS {
expected_vec.push(expected_val);
buffer.extend(encoded_bytes);
}
let mut decoder = ValueDecoder::new(&buffer);
let vec = decoder.decode::<Vec<u32>>().unwrap();
assert_eq!(vec, expected_vec);
assert_eq!(decoder.bytes(), EMPTY_BYTES);
}
#[test]
fn roundtrip_u32_vector() {
roundtrip(vec![0u32, 1, 2, 3, 4, 5, 6, 7, 8, 9])
}
}